(1)证明:∵在平行四边形ABCD中,AD∥BC
∴∠ADB=∠DBC.
∵AE=AB,
∴∠ABE=∠AEB.
∵∠AEB=2∠ADB,
∴∠ABE=2∠DBC.
∵∠ABE=∠ABD+∠DBC,
∴∠ABD=∠ADB,
∴AD=AB,
∴四边形ABCD是菱形;
(2)解:∵在平行四边形ABCD中,AD∥BC,
∴△AFD∽△EFB,
∴
=AD BE
.AF EF
∵AD=BC,BE=2EC,
∴
=AD BE
=AF EF
.3 2
∵AE=AB=10,
∴
=10?EF EF
,3 2
∴EF=4.